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Abstract
A numerical methodology which determines the quality (or robustness) of a-

posteriori error estimators is described. The methodology accounts precisely for
the factors which affect the quality of error estimators for finite-element solutions
of linear elliptic problems, namely, the local geometry of the grid and the structure
of the solution. The methodology can be employed to check the robustness of any
estimator for the complex grids which are used in engineering computations.
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1 Introduction

A-posteriori error estimation has become a key feature of practical finite-element
analysis. Because of their practical importance error estimators have been the
focus of intensive research; see for example [1-53] and the references in these pa-
pers. While some a-posteriori error estimators have been analyzed mathematically
(e.g. [1], [6], [9], [13], [14], [15], [16], [17], [23], [38], [39]) many estimators have
been derived by purely heuristic reasoning. Usually the estimators are validated
numerically on a set of benchmarks (example problems) which are selected in an ad-
hoc manner. Most benchmark computations fail to isolate the basic factors which
influence the performance of estimators and can motivate wrong conclusions. In
this paper we present a clearly formulated objective validation principle for error
estimators which takes into account the major factors influencing the performance
of estimators in the case when the element is not at the boundary and the ex-
act solution is smooth (in the neighborhood of the element). The methodology is
completely numerical and can be used even when the definition of the estimator is
unknown and is given only as a black-box co_-puter program.

In practice, we are interested to have an accurate estimate of the error in a cell
w0h of the mesh Th (we will use the term cell to refer to a small patch of elements;
the cell may consist of a few (possibly one) elements). The performance of any
error estimator in wo' depends on the local geometry of the mesh in a slightly bigger
patch w~h which includes w0h in its interior (see Fig. 1) and on the local structure of
the solution and no heuristic benchmarks can properly account for these factors.
The methodology given below enables us to focus in the cell of interest and to study
the robustness of any error estimator (even if it is only available as a black-box
subroutine) for the actual geometries of the grids which are used in the engineering
computations. The methodology requires the solution of relatively small problems
in the regions of interest and is inexpensive. In contrast, benchmarks require global
computation (which can be expensive) and do not lead to reliable conclusions.

The quality of an error estimator in the cell wo' is measured by the effectivity
index

e~ll.o I F_• :7 21 2• (1)
FIIIhIILE.I. v4ETg,

where IIlehIl4J is the norm (of interest) of the error over w0h, 9.,h is an error esti-
mator for this norm which is computed in terms of element error-indicators rk, r
denotes an element in the mesh Th. In this paper, we will consider estimators for
the energy-norm of the error. The methodology of the paper can also be used to
study the quality of estimators for other norms. Let 11 denote the domain of the
problem; in [1], [6], [9], [13], [14] it has been shown that the range of the global
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effectivity indez, icn, exists for several estimators based on residuals, namely there
exist constants 0 < C2 < COO < +o0 such that

o0 n< rn _ Cu < eo (2a)

The two-sided inequality (2a) has been proven under very general assumptions
about the exact solution (it is only required that the exact solution has finite-
energy), reasonable assumptions about the regularity of the data (all practical
cases are included) and under mild restrictions on the regularity of the mesh (see
the details in [6], [9], [13]). Inequality (2a) can also be written in the form

1 1
_< -Cn:5 e' n _< j•f C (2b)

which expresses an equivalence between the global norm of the error and the estima-
tor. Practical values for the equivalency constants CL and CV cannot be obtained
for a given estimator unless further information is known about the class of solu-
tions of interest and the finite-element meshes employed. A concrete example of
how the constants can be estimated in the case of a simple residual estimator was
given in [50] and [51]. The values of C2 and Cun depend strongly on the geometry
of the grid and (relatively weakly) on the smoothness of the solution; the geometry
of the grid must be understood in connection with the differential operator (see
[50] for the details).

It can also be shown (see [53] and the outline given below) that under reasonable
assumptions about the grid we can determine the asymptotic range of the effectivity
index for any estimator in any small interior-cell who (a cell which is separated
from the boundary by several mesh-layers) of the grid; i.e. there exist constants
0 CIO < C' < +0o which depend only on the local geometry of the grid in woh
and a few mesh-layers around it (the geometry of the grid in a sufficiently large
patch wJ' which includes w0h in its interior) such that (as the local mesh-size in up0
and w.h tends to zero)

S "< , < < (3)

The constants C•'r, Cf are the best possible constants (i.e. they can be
achieved) over an entire class of smooth solutions which occur in the field of appli-
cation. When the values of the constants Cj" , CýUO are known we can also manu-
facture an upper-(resp. lower-) estimator version of .6..h denoted by 6• (resp. C."&)
defined by

1 1

ch us.h hI (4a)
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We then have

<-<---- <

(4b)

-'gII e•I11
ra <.,: ; <

The lower-estimator version of an estimator may be employed to drive adaptive-
refinement algorithms in order to avoid over-refinement while the upper-estimator
version may be used to guarantee a safe stopping-criterion.

Let us define the robustness index R., (0 < R.: < oo) which expresses the
reliability of the estimator:

IZ~h:=mx((1 -COh +11-C~~h), (1 +-l -111 1 ) (5a)

The robustness index expresses the deviation of r and - (see (2a), (2b)) from the

ideal value r = 1. (Hence *R,. = 0 is the ideal value for the robustness index.)
The robustness of an estimator for a given class of meshes T = {Th} is given by

X(T) := max , 1,R,, := max (5b)
ThET ' ,-¢(•) eE

Here C(Th) is the set of interior cells in the mesh Th. The robustness index defined
in (5b) characterizes the performance of the estimator for elements in the interior
of the domain. Because most elements are in the interior of the domain (where
the solution is smooth) the validation of the estimators has to be made especially
for the case presented in this paper. The validation of the estimators for elements
located at the boundary and for unsmooth solutions will be given in subsequent
papers.

If an estimator does not display reasonable robustness for the interior-cells,
i.e. if R(T) is too large, the estimator is unreliable and should not be considered
any further. The robustness index depends on T, the family of meshes under
consideration. (Hence restrictions placed on the mesh-generator could possibly
increase the reliability of an estimator.)

The robustness index is an objective quantitative characterization of the relia-
bility of an estimator. Hence, analogously as the effectivity index, the robustness
index of an estimator should be reported.
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Following this Introduction we present the definition of the model problems
(linear elasticity and heat-conduction), we describe two types of error estimators,
we present the methodology for the computation of the robustness index and we
outline its theoretical justification. Finally, we give examples which demonstrate
how the robustness index of error estimators for complex finite-element meshes can
be computed and how it is possible to increase the reliability of an estimator by
proper selection of its various parameters.

2 The model problems

We shall consider the vector-valued boundary-value problem

2
L,(u) :- ,Di(a.1 (u)) = f, in f

j=1

ui = 0 on rD (6)

2
E oij(u)nj=E, on rN
j=1

where i = 1, 2.

Here il C R 2 is a bounded domain with boundary an = rD U rN;

n := (ni,n 2 ) is the outward pointing unit-normal on rv;

f t , i = 1, 2 are the components of the load-vector (body-force);

Ti, i = 1, 2 are the components of the normal-flux vector (traction) applied on IN;

rD 3 o, FD n rN = 0; u = (Un,u2) is the solution-vector (displacement);

eij(u) 1 (Djui + Diuj), i,j = 1,2 (7a)

2

oij(u) :- • aijatejd(u) , i,j = 1,2 (7b)

are the components of the flux (strain, stress);

ailid , i, j, k, I = 1,2, are the material-coefficients (elastic constants) which satisfy

aj.jl = aji = aoaij, i,j,k,1 = 1,2 (8a)

6



2 2
ad j > c •ejj i, c > 0, V ej= j (8b)

(Conditions (8a), (8b) are satisfied for linear elasticity; in the case of isotropic
plane elasticity we have aiit, = p( 6•i6kt + 6it 6 kj) + AM.j6jt where 6ij is Kronecker's
delta and A , p are Lami's constants.)

We also introduce the scalar elliptic boundary-value problem (heat-conduction
in orthotropic medium), namely

(u)= DA (K eDeu) =f in 0

u = 0 on rD (9)

F qk(u)nk =on rN

2
Here q,(u) : KitDtu, k = 1, 2 are the components of the flux-vector (heat-

flux) and Ki, k,t = 1,2, are the entries of the thermal-conductivity matrix which
satisfy

K" = K& , k,1 = 1,2 (10a)

Here Kmin, K-,. denote the principal values of the thermal-conductivity matrix.

Let us now cast the model problem in variational form. Let us denote

HR := { (V,,V2 ): V, E H'(fl) }

S: {(vlV2) : ViE H'(fl), v,=0 onrD}

IIvll1, := I1•, ' , IVIn ISO

7



with IlvIlin (1villn) being the usual H1 (fl) Sobolev norm (seminorm). The vari-
ational form of the boundary-value problem (6) is now posed as:

Find u E Erv such that

f2 2Bn~~ v = ~ f~v + Jr ~jiv V E~ F (11)
i----IN i=l

where the bilinear form Bn : B x -+ R is defined by

B f 2

Bn(u,v) := n aijjhDtuDjv. (12)

The energy-norm over any subdomain S C fl is defined by

11vIIIs:- I /Bs(vv) (13)

where Bs(u, v) has the obvious meaning.

In the case of the scalar elliptic problem given by (9) the bilinear form is given

by Bn(u, v) := E KdDLuDkv. The weak-solution of (9) satisfies:

Find uEHi H :-{vEH'(fl) : v,=-0 on rD}suchthat

B (u,v) = ji fv + JrN V v E HrD (14)

The energy-norm in any subdomain S C_ 0 is defined by IIvllls : -

Let T = {Th} be a family of meshes of triangles or quadrilaterals with straight
edges. It is assumed that the family is regular (i.e.: for the triangles the minimal
angle of all the triangles is bounded below by a positive constant, the same for
all the meshes; for the quadrilaterals see conditions (37.40) in Ciarlet [581). The
meshes are not assumed to be quasiuniform. Let us introduce the finite-element
spaces

S:{u e Hf : U1oQ(k) E "Pp(;), i = 1,2, ks = 1,...IM(Th)} (15)

where Q(M) is the mapping function for the kth finite-dement which maps either a
standard triangular element (using an afline transformation) or a standard quadri-
lateral element (using a bilinear transformation) onto the kth finite element, F
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denotes a standard element, M(Th) is the number of elements in the mesh Th,
P,(f) denotes the set ,t polynomials of degree p over fr. We let

sp =s' nW!o
h,! -S~iXD'_ h-u 0D

The finite element solution uh (for the elasticity problem) satisfies:
Find uh E S•,r such that

2 f2

O(Uhv') = j fv + f j igv V E Sip, r, (16)

The error is eh := u - uh.

Remark 2.1. We addressed only (for simplicity) the model problems for which
the differential operator L (or L') is homogeneous with constant coefficients. The
theory and the procedure holds for the general case, for non-homogeneous operators
with non-constant (but smooth) coefficients.

In the following we give two representative classes of estimators for the energy-
norm of the error and we employ the model methodology to check the robustness
of various versions of estimators from these classes. Below we define the estimators
for the elasticity problem (the estimators for the scalar model problem (9) may be
obtained by analogy; see also [531).

3 Element-residual error estimators

3.1 Implicit element-residual estimator

We introduce notations needed for the description of the estimators (see also [8),
[14]). For each closed triangle (quadrilateral) r E T%, we denote by E(r) and N(")
the set of its edges and vertices, respectively. We define the local bubble-spaces of
polynomials (see [8], [II], [12], [14], [21], [22], [23])

, :=(w : wi E?, , rwi(X)=0 VXEN(i"), i=1,2},

over each element T E T#.

We define the interior-reidual in element r as

r,. := -L(uh) +f (17)

where L(u") := (LI(u"),L,(u")), f := (fl,.2).

9



and the jump or edge-residual associated with the edge e

J.:- [o(uhIT..) - a(u"ljj)]n (18)

where n is the unit-normal for the edge e and -,. and ".. are defined as h! Fig. 2.
The residual-functional for element -r is

Yfv:=j.rl 1 • J~v.J., vEH1 (r") (19)T,(v) := vr, + -•,' V H(,) 19
aeB(,r) f

We now define the element-residual estimator for the model problem (6) (we
give the estimators only for elements in the interior of the domain).

The element error indicators for the implicit element-residual estimators for
elements of any degree p are:

: IlleIlll. (20)

where

e,. EE. R B.(e.,v4=) -. F,(v.), V v, E Hr (21)

3.2 Equilibrium of the residuals

The residual data for the local problems (21) are equilibrated if the following
consistency conditions (equilibrium equations) are satisfied,

r,+ 1 /Ja= 0i 1 +0i 2'EB(r) J

(22)

jxxr 7 + 2 , fxxJ.= 013
.+ 2 R() f, I

Here il, i 2 denote the unit-vectors along the global coordinate directions in R? and
i3 the out-of-plane unit-vector. The element equilibrium equations (22) will hold
if

E{YT(ilNi) il + '(iN) i2 } =0il + 0i 2

(23)

nExi x {r(ixN,)ii + .F'(i2N1 ) i0} =0i3

10



"Uw
It is assumed that the set of functions {Ni}•-w satisfies NiL = 1, V r E Th.

i=1

The equilibrium conditions for element •r will be satisfied automatically if

.(•) = 0, I= 1,2, i = 1,...,n' (24)

These conditions, however, are not expected to hold for general meshes and solu-
tions; below we discuss ways of correcting the definition of F, to satisfy conditions
(24).

Remark 3.1. A possible choice for the functions {Ni}=!" is a set of Lagrangian
basis functions of degree q < p (p is the polynomial degree of the finite-element
space) defined over Th. In the discussion below we let q = 1, NiL is the linear (for
triangles) or bilinear (for quadrilaterals) element-shape-function which corresponds
to the i-th vertex and nv is the number of vertices for element " (nv = 3 for
triangles, nv = 4 for quadrilaterals).

3.2.1 Ladeveze's flux-splitting technique

The definition of 7,. in (19) may to be modified in order to satisfy (24) by letting

.J v) := Y'(v) +/ L v.0, , v E H1 (") (25)

Here, 0, E (L2(8r)) 2 is the correction of the edge-residuals for the element r.

We let

whre =0" (e + 0P;), c E E(1-) (26)

where,

+1, if r = 7i.,

-1, if • "..,,

where it is assumed that the edge normal n has been assigned to the edge e in an
arbitrary but unique way and r'.. and r., are defined as shown in Fig. 2. Here, the
linear functions Ok, are defined as,

2 (2A, _ V•,
014 :=j k = 1,2 (27)

where A,,, k = 1, 2 are the linear shape-functions defined over the edge e and the
subscript k + 1 is taken modulo-2. Using this definition of 0,.1. we can decouple the
problem of determination of 0,1. for the whole domain into small local problems
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involving only patches of elements connected to node X, as shown in Fig. 3a. We
have

0 f- ,1.[ A, k = 1,2, e E EP(r) (28)

Thus, for each patch around a node X we obtain a linear system (see [24], [8], [32],
[591 and [601 for the details)

falix (it. -") OX =- ( ) I---1,2 k= 1,...,Nx (29)

where O'x denotes the elementwise affine basis function (for meshes of triangles)
which corresponds to the vertex X, 'h denotes the k-th element connected to the
vertex X, NX is the number of elements (or edges) connected to the vertex X.

The procedure outlined above has been developed by Ladeveze [59]. The linear
system (29) has a one parameter family of solutions. Specific choices of solutions
are suggested in [8], [25], [32], [60] and [61]; in the numerical implementations
we employed these choices. Below we give the definition of the edgewise-linear
correction 0, (q-degree (q _> 1) polynomial representation of the correction 0, over
each edge is also possible) which results by using the equilibration procedures in [8],
[25], [32], [60] and [61]. Let us consider the interior-vertex X and let us also denote
4, i = 1...,Nx the edges connected to X. We will determine the coefficients
e, X) which is associated with the edge e and the vertex X and is employed in
(26). Here the index ,(e, X) identifies the local enumeration of node X, as used in
(26) for the unknowns associated with the edge; see Fig. 3b.

a. Bank and Weiser's equilibration:

A solution of (29) can be obtained by letting

i'. Y•,(ix), I= 1,2 (

S(30)
it it. -F,.z 01OX), 1 =1,2; i=2,...,N

This choice of solution has been suggested in [8].

b. Ladeveze 's equilibration:

Here the coefficients 0~ = (it. V'))i*, i = 1,..., N are selected such

that
N

IX(0) := E[w(i, (.(.WX))]2 (31)
s-1

12



is minimized for I = 1 and I = 2 separately, where w, is the weight associated with
each edge ei. In [25] and [32] the weights wi have been taken as 1. For this choice
of weights, the solution of (24) is given explicitly as,

N

it"r(e.)= 1i(N-i+ 1)Yc. (itex), I= 1,2

it .ee 1 x) i t. .4, ) - .'x(ijox), I= 1,2 (32)

it. .'f = W-ti,.•T'.- Y.r(ifOx), I = 1,2; i =2,3,...,(N- 1)

If we take the weights w, := Ic,1-1, as suggested in [60] and [61], we can obtain a
different 0, satisfying (29).

Remark 3.2. From eq. (29) we can see that the functional Y with any of the
above choices of the correction 0, as the above will satisfy (24) and therefore the
equilibrium conditions (22).

3.2.2 Ohtsubo-Kitamura flux-splitting

In [29-31] a different procedure for determining equilibrated force-fields for
an element r is described. In this procedure each element can be equilibrated
separately from its neighbors i.e. the equilibrations are done at the element-level.
The technique has as follows:

Let us define the residual-functional

.v)=jr,..v+ F fa,•..,., V VvE H'r) (33)
eEBO') '

Here a' is the geometric splitting-factor for the initial allocation of the jump J.
defined by

where d:w, <-' is the distance of the centroid of the element r.., r.T, respectively,
from the common edge e (the choice of the splitting-factors is motivated from the
one-dimensional case where a unique fIlux-splitting exists; see [25], [26] and page
296 in [62]). Following [29-31] we will assume that the finite-element solution
has been computed using bilinear quadrilaterals (or linear triangles) and the local

13



element-residual problem is discretized using 8-node serendipity quadrilateral (6-
node Lagrangian triangle). Then the discrete nodal-forces for the local problem
are

g= e. J.~6 N (34)
eCB(r)

where Ni, i = 1,... ,nv' (nv' = 8 for quadrilaterals, nv' = 6 for triangles) are the
Lagrangian shape-functions used in the discretization of the local residual-problem.

The consistency conditions for the discrete element-residual problem in element
r are

r+ = Oil +0i 2
t=1

(35)

x r+ x r " xi X -Ois

Here [ i = 1,... ,nv' are the consistent nodal-forces which satisfy (35). In gen-
eral the loads g& given by (34) (from the initial flux-splitting) do not satisfy the
consistency conditions (35). We seek corrective-loads Ag& such that

& = g& + A• (36)

Following [31] we will select {Agil}'o such that it satisfies (35) and has minimal
Euclidean-norm in R"' (this choice is motivated by the idea that the correction
should be as small as possible; see [31]).

4 Error estimators based on smoothening
techniques

Error estimators based on recovery methods are given in [33-44). Here we focus on
the superconvergent patch-recovery technique [40-44]. The element error-indicators
for elements of any degree p are

17, := lie - a(uh)I 1(.)- (37)

where

I1-1lj ,),,-, := a, f aw (38)

14



where a,-). are the entries of the compliance tensor, a* is the recovered flux.

Let wx := U r' denote the patch of elements connected to vertex X. For
XEN(,r')

each patch wx we recover the patch-projection Fx by solving the following least-
squares problem:

inf" Ila(u1) - 'IIL•(,,),.-,{y,). = ia(uh) - Ex ),1:.,).I (39)

i.jin,2

where {Yl}• denotes a set of sampling points in wx and

"1I I 2(,x) 1-,,{y* } .P := Ia [,= (ym) a-' od(Y, (40)
M=1 Lj.1,1~=1

e is obtained by averaging the patch-projections &X over the elements (see [40],
[41]).

Note that the class of estimators given in [40-41], [43-44] use only the approx-
imate solution uh to estimate the error. It is possible to modify the definition of
the estimators to include the information given by the data and the differential
equation. In [42] a modified patch-projection Fx was defined to take into account
the additional information, namely

F(&rx) = inf flux) (41)
F, E p(.x)

where

2 2

F(a) := IJa(uh) -YL')(u 2)•rI({y_}• + J hfi + Dj(o'ij) La (U,), (y,,}p (42)
-- 1 j=1

and

I( ,y.{y*}%. := E (V(Y-)) v E C0 (wx) (43)
M~=1

In the majority of the practical problems the body-force vanishes identically
(fi = 0, i = 1,2). To take this information into account we define the space of
"harmonic" polynomial fluxes:

2

e:VjE ( ) W, i, j = 1,52 and ED (aij)=0, i=1,2} (44)

15=



We may now modify the minimization problem in (39) by seeking the minimum
over Sa-(wx); ax in this case will be called "harmonic" patch-projection.

Remark 4.1. Although the intention is to use superconvergence points, the
estimator performs very well (as will be seen later) also if the sampling points are
not superconvergence points (which for general meshes do not exist). In general,
the performance of the estimator depends on the selection of the sampling points.
The sampling points in each element are obtained by mapping the points defined
in the standard-element for each element-type (see Fig. 4; the performance of the
estimators for the various choices of sampling points will be addressed below) and
may be selected, more or less, arbitrarily but must be invariant with respect to
cyclic permutations of the vertices of the elements (the error estimator must be
independent from the enumeration of the grid).

5 Theoretical setting of the methodology

The theoretical justification of the numerical methodology for checking error
estimators is outlined below (see [53] for the complete presentation). The mathe-
matical framework is outlined for special types of grids which are locally-periodic in
the regions of interest (here we assume triangular grids; the theoretical setting for
meshes of quadrilaterals with straight-edges follows similar steps). These grids are
made locally by the periodic repetition of a super-patch as shown in Fig. 5b. The
theory has asymptotic character (it holds for sufficiently small size of the super-
patch) and can be also used to study the local asymptotic properties of general
grids like the ones shown in Figs. 1 and 6. These are typical meshes produced
by automatic mesh generators and include various patches of different geometrical
structure (The grid of triangles shown in Fig. 6 was constructed using a com-
mercial mesh-generator; the grid of quadrilaterals shown in Fig. 1 was obtained
by converting the mesh of triangles shown in Fig. 6 into a mesh of quadrilater-
als. Note that the grids are refined in the interior because they were originally
constructed to include an interior material interface. We adopted these grids be-
cause they are rich in patterns and we considered model problems in homogeneous
continua.). Here, for simplicity, we will address only the case where u satisfies
Poisson's equation (-Au = f; Kk = 4• in (9)) and is approximated by piecewise-
linear finite-elements, (p = 1). Nevertheless, the results could be easily generalized
to the general setting of elasticity in orthotropic medium (see eqs. (6)-(8)), to
meshes of quadrilaterals and to higher-order elements.

It will be shown that the robustness index of the shaded cell shown in Fig. 5c
depends practically (in the range of engineering accuracy) on the mesh in its neigh-
borhood (the grid-geometry in the patch included within the thick-line perigram
in Fig. 5c) and not on the further extension of the mesh into the periodic super-
patch. Let us now specify more precisely the class of meshes employed by the
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mathematical analysis. Let 0 < HzO < HrA < H, X3 = ( oz0) E

S(xH := {x = (Zlz2) : Iz, - z <H, i = 1,2} (45)

and assume that HO is sufficiently small that S(xe,H 0 ) C fA. By 9 (X3,H) we
denote the domain of S (xe, H) with its boundary. We have

Zo := S(x°,Hz.) C o:= S(x°, Hn . ).

Further, let (i,j) E -y be a set of multi-indices, x(d) = (z2 iJ), 3 •i)) E n and

c(x('j),h) := S(x('j),h) C S(x°, HO) , (ij) E y (46)

be the set of the h-super-patches (briefly super-patches) which cover S (X°, H0)
such that

U a (xYj), h) = 9(x¶,HO) (47Ta)

c(x(' j•),h) nc(x(2'sh),h) = 0 for (il,jl) # (i 2,j 2 ) (47b)

We will assume that S (Xe, Hz.) (and S(Xe, Hn.)) can be partitioned into the
set of super-patches

S(x°,Hz,) = U E(x('j),h)
e(z(j),h)ns(xoHs )oe

(An example of a general domain fl with the subdomains Zo, no0 and S(Xe, H*)
is given in Fig. 5a)

Denoting by

{(XIZ 2 ) I zi < 1, I Z2 j<} (48)

the unit- (master-) super-patch Z, the h-cell is an h-scaled and translated master
super-patch.

Let further !f be a triangular mesh on the master-super-patch (the master-

mesh) and T,~"'J be the mesh on c(x(iJ), h) which is the scaled and translated image
of T. Let us now consider the family of regular triangular meshes Th = T (fl, h) on
fl with elements r and their restrictions T% (Xe, H°) on S (Xe, He). We will denote

by T("') the restriction of T, (xe, HO) on c(x(iJ), h). We assume that the meshes
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under consideration are such that .(•) = fVi4 ) and are translation-invariant in
S (x0 , H°). An example of such a mesh is shown in Fig. 5b where the master mesh
is shown in Fig. 5c. We note that we are dealing with a one-parameter family of
meshes 7(0, h). The parameter 2h has the meaning of the length of the side of the
super-patch in S (x°, H). In 0 - S (x3, HO) it has, in general, nothing common
with the size of the elements used.

Given a function u and the multi-index cL := (al,a2 ) with LaI := al + a2 we
denote

8I1"u
D'u 8z= O•' 82 (49a)

(Vk)#)(X) [( D-u 2) (x)] k l > 0, integer (49b)
ICtI=k

We will make the following assumptions about the exact solution u:

Ass-imption I

On S (x3, Hn)

IDuI_•K<oo, 0<ol I<3 (50)

Remark 5.1. Assumption I states that the solution is smooth in the neighborhood
of the subdomain of interest (the subdomain must be sufficiently far from singular
points, boundaries and material-interfaces).

Assumption II

R 2 = [(D-u) (xo)] 2 > 0 (51)
IaI=2

We will assume that HO is sufficiently small depending on K and R.

Remark 5.2. Assumption II implies that the principal part of the error is related
to the (nonzero) second-derivative of the exact solution.

Assumption III

On S (x°,Hzo), Hzo < Hn < HO

I ehIjs(o,H..) < Ch'Hzo (52)

16
with 8 _ -T and where C is independent of T(Q, h), Hz., but it depends on K
and R. Here I" II denotes the usual L2-norm.
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Remark 5.3. We do not assume that u is smooth in 0 outside of S (x-,Has).
For example, 0 can have a boundary with corners (as in Fig. 5a) and hence u can
be unsmooth in the neighborhood of these corners. Nevertheless assumption III
makes an implicit requirement on the (refinement of the) mesh in the neighborhood
of these corners (so that there is no significant influence (pollution) of the errors in
the neighborhood of the corner on the errors in S(xO, Hz.) ; for further discussion
about pollution see [55]).

In the following we give the major theorems which justify the methodology of

the paper (for a complete presentation with proofs see [53]).

Let Q be a quadratic Taylor-expansion of u about x° defined on S (x°, Ha.)
and let Qh be its linear interpolant on the mesh Th (x3, Hno). We define the
interpolation error

p:= Q - Q• (53)

which is a periodic function on S (x', Hr0 ) with period 2h (see [531). Let

H,', ( (xý4,h) {u E H' (c (x(s-j), h)) u satisfies (54b)} (54a)

where
,( + h,Z2 ) = U(•,) - h,Z2), Ih - 4fr)1 < 1

(54b)

UXX2+ h) =u(zi,z43) - h), 1~ ~'i<

is the periodicity-condition in c(x("j), h) and

We introduce the periodic finite-element problem:

Find zP E Sh,PR (c (x(ui), h)) such that

B' (Xi,,jh) (z4, Vh) = B'I(zJ,) (p, Vh) V Vh E SL. (c (('), h)) (56)

and

f .. ,h) - z1) = 0 (57)
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The function z' v';11 be called the periodic finite element approzimation of the
interpolation-error p. Let us remark that by scaling and translating the mesh we
can solve the finite element problem in the master super-patch using the master
mesh. We will denote by Z the periodic extension of z, on S(x", HO.). Let us now
define the error in the periodic finite-element approximation of the interpolation-
error

p - (58)

The main theorem of the paper states that e1 (the error in the finite-element
approximation) has the same asymptotic behavior as 16 (the error in the periodic
finite-element approximation of the interpolation-error in the quadratic Taylor-
expansion of the solution about x)) in the neighborhood of x°.

Theorem 1. Let Hz0 < Hn0 < H1, and let assumptions I-Ill hold and

9

C1H;O <h <C 2 H0',, a = 9 (59)

16
Then if P = in assumption III

II[ehIIIs(zo,H~o) = III•IIIs(= o)(l + CfII•Illl(.0,Hr.)) (60)

1
where C is independent of h and H0 0 , j. = , .

Let eh := Q~wT + ? denote the finite-element approximation in the uniform-
patch S(x°, Hz.) of u constructed from the interpolant and the periodic finite-
element approximation of the interpolation error (note that fh can be constructed
from the interpolant Q'T and by solving a small discrete problem to obtain zh, in
one super-patch). It can then be shown that uh st ýh in S(x0 , Hz,).

Theorem 2. Let the assumptions of Theorem 1 hold then

Iiu _ -h IIIS(zoHe,o) = II1UJ -- QIT - I IIs(x.o,m.) - ChllIIIIlls(Z.,H) (61)

where C is independent of H and h

In (17)-(44) we introduced various specific element error-indicators ,. which
depend on the finite element solution u1 and the data-function f. The error-
estimate in Zo is
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Ez -Cz. (Uf) { .4 M

Cz. utilizes the finite element solution uh on r E Th, r C Z0 , and on the neigh-
borhood of Zo. Let us denote by Zoa a slightly larger subdomamn which includes
the element in Zo and their neighbors (the estimator in Ze depends on the finite-
element solution uh in Z04 and the function f (see (9))).

We will impose on the estimators the requirements of scale-invariance and
stability.

Definition 1: Let X, = czj, X 2 = cz 2 and

Zo :={(XiX 2) : ( T2) E Zo} I j,~(X1sX2 )= U/h(• 1 , 2 ),

The = I(XI X2): (I, 2) T1,I F(XI X2 := -2fMIZ2) (62a)

Then the estimator is scale-invariant if for any c E (0, co)

Cze(j, )= pZ9(Uh f ) (62b)

Remark 5.4. The energy-norm is invariant with respect to the scaling of the co-
ordinates and hence the estimators should also be invariant. On the other hand be-
cause the differential operator is of second-order the scaling appears in F(X1, X 2).
It is obvious that every error estimator should be scale-invariant.

Definition 2: The estimator Cz. is stable if for any Z0, any v', i#p E Sh(Zoh) and
s,g E L2(Zo) and 0 < a < 1

1 Z20(v h + V + g) -. 2 4(Vh 8)j • C[a4.2z(vh,a) +(1+ a-')E'(ip"g)] (63)

where C is independent of h and the class of admissible meshes under consideration.

Remark 5.5. The stability of the error estimator describes the requirement that
small changes in the finite-element solution uh and the data f should result in
small changes in the value of the estimator. It can be shown that all estimators
mentioned above are scale-invariant and stable.

The following theorem states that whenever an estimator is stable we can em-
ploy the results from the error-estimation in the periodic super-patch to study the
quality of the estimator in the actual finite-element mesh.
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Theorem 3. Let the assumptions of theorem 1 hold and the estimator be scale-
invariant and stable. Further assume that for the estimators

,&(c(xo,h), e,L'Q) = &W h)(h ,L'Q) > a ) 0 (64)
1110 11I1e(zOh)

(Here we use the notation L'Q -AQ; L'Q is a constant function. Recall that
we address here only the case p = 1 and Q is a polynomial of degree 2). Then

1C(S(xI,Hz,),Uhf) = L'(S(x°,Hzo),Ch,LiQ)(1 + Cho) (65)

Theorem 3 states that the effectivity index K(S(x0 , Hz.),uh, f) is asymptoti-
cally (as h -- 0 ) the same as the effectivity index rc(S(xo,H&),eh,L'Q) and it is
easy to see that

rc(S(xo, Hzo), eh, L'Q) = K(c(x 0 , h), f ,L'Q) (66)

Hence we can compute the effectivity index by solving a small discrete problem
in one super-patch only and because of invariancy with respect to scalings we can
study only the master mesh on the master super-patch. Note that the asympotical
rate, as stated in the theorem 3, is very low. Let us underline that the aim of
the theorem was to show the asymptotic behavior and not to obtain the optimal
asymptotic rate. We have numerically shown (see [531) that the effectivity index
computed from the cell analysis is not too sensitive to the surrounding meshes and
that the term Chl in (65) can be neglected.

The fact that we have used square super-patches is not essential (for example
it is possible to employ regular hexagons or parallelograms as super-patches). For
the proofs it is only essential that the mesh is locally translation-invariant. Let us
mention that if the solution u is harmonic (Au = 0) we can analyze the effectivity
index of the estimator only for harmonic polynomials. Let us also underline that
the assumption that u satisfies Poisson's equation and the elements are linear, was
made only for simplicity. The theorems hold for general elliptic operators with non-
constant coefficients which are allowed to vary smoothly throughout the domain,
and for higher-order elements. Although the theorems were formulated for the
energy-norm they can also be restated for other norms under proper assumptions.

6 The methodology for checking the estimators

We now describe the numerical methodology which is employed in the calculation
of the robustness index for a given estimator. The robustness index depends on
the following factors (see also [50-531):
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a. The geometry of the grid:

The main factor which affects any error estimator is the geometry of the grid
namely the connectivity or topology of the grid and the geometry (distortion)
of the elements. The element geometry has to be considered in connection with
the differential operator for the boundary-value problem. For example the or-
thotropic heat-conduction operator can be transformed by an aine transforma-
tion to Laplace's operator on a distorted mesh which has different minimal and
maximal angles.

b. The class of solution.:

In this paper we study the robustness of error estimators for linear elliptic
equations and interior mesh-subdomains. It is well-known that the solutions of
elliptic boundary-value problems are analytic in the interior of the domain if the
coefficients of the operator and the right-hand side are analytic; for this reason we
will consider the class of smooth solutions. Of particular interest is the subclass
of smooth functions which satisfies the homogeneous differential equation (we will
refer to such solutions as "harmonic"; if the solution satisfies Laplace's equation it
is truly harmonic). The asymptotic properties of error estimators for the class of
smooth solutions can be studied by considering the class of polynomials of degree
(p+ 1).

We now give an outline of the numerical procedure which determines the ro-
bustness index X for any error estimators.

Let us assume that we would like to determine the robustness of an estimator
for a mesh Th from a given class of meshes (the class may be defined as the class
of meshes produced by a commercial mesh-generator or an adaptive code). Let
{•wx}7'=l the cells of elements connected to the vertices of the mesh. Let wx
an interior-cell (it is separated by several layers of elements from the boundary,
singular-points and material-interfaces). Let

and for a > 1, integer, define recursively

W1.1: U ,WX

From the analysis (given in [53] for locally-periodic meshes) and numerical experi-
ence (for more general meshes) we know that the effectivity index for any estimator
in the cell w0h depends practically on the geometry of the mesh in the patch w.' for
only a small a (s = 1 - 4) (more precisely increasing s will change the robustness
index only minimally). Given a mesh Th (resp. class of meshes T) constructed by
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a mesh generator, there are patches w.' of various types (topologies). We can now
analyze all these patches separately and compute *RTA (resp. %(T) ) as defined in
(5b). For example, in Fig. 9 (resp. Fig. 10) we indicate the mesh-cells w0h shaded
and the patch wsh (resp. w4) with its perigram shown by thick line, for various
interior-cell/patch combinations from the grid shown in Fig. 6 (resp. Fig. 1). We
can determine the robustness of any error-estimator in wo as follows:

1. Completion of the mesh-cell to a periodic super-patch.

We translate and scale the subdomain w, so that its image _ = C-1,11 x
[-1,1] (see Fig. 7b). Then we employ a mesh-generator to complete the mesh in
-a into a periodic-mesh T in the super-patch 2 (see Fig. 7c).

2. Periodic boundary-value problem:

For given exact solution u with components being homogeneous polynomials
of degree (p + 1) denoted by P•p+ 1 (u E (*Pp+) 2 or exact "harmonic" solution
u E (PP+1 )2 such that Lj(u) = 0, i = 1,2), material properties and mesh-pattern
(the local geometry of the grid in the cell wo' and the patch w.) determine

a) The finite element solution u',

b) The exact error eh,

by solving the following periodic boundary-value problem:

Find zh E K•., (2) such that

BrI,(zh Vh) Bn,.,(u - uhvh) v vh E 1 .,, (67)

where

f {wh E H1 (Z) : wh(-1,M2 ) = wh(1,z 2 ), wh(z 1,-1)= wh(=I,1)

and w"E( ('p,)2, rEtI

uý denotes a continuous piecewise p-degree interpolant of the exact solution u.

We select the solution zh of (66) which satisfies

f zh =JI(U - (68)

and we define

U"h =u+zh eh = (u _ ) Zh. (69)
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Thus from (69) we obtain the finite-element solution uh and the exact error e• and

for a given estimator we compute the effectivity index

rc,: = rc,: (material coeff., grid-material orientation, pattern, solution coeff.)

Remark 6.1. We note that the effectivity index r is independent of the normal-
ization of the coefficients in (7p+.) 2.

S. Numerical optimization

We let

= max max Ki,& , = mmmm .u (70)

The bounds C4, C7Z4 for a given class of solutions and materials, a given pattern
and for a given grid-material orientation can now be computed using numerical
optimization. We compute the robustness of the estimator in woh C .w from

max O.h I8=#1,2,3,J. "0

(71)

We can then compute the robustness of the estimator for the mesh Th by computing

R := max Ih (72)
XeMý-(T&)

Here .,,(Th) denotes the interior vertices of the mesh (the vertices must be sep-
arated by two (or more) layers of elements from the boundary of the domain and
from material-interfaces).

Let us underline the reason for the optimization. In general we know only
that the solution satisfies the differential equation, e.g. it is harmonic (when f =
0). Hence we wish that the effectivity index is small for the entire considered
class. From the results of the theoretical study (see [53]) we can restrict the class
of functions to harmonic polynomials of degree (p + 1) only. Establishing the
bounds for the classes of meshes and solutions of interest is essential for judging
the robustness of an estimator.

Remark 6.2. Note that the methodology assumed that the local mesh-size
h is sufficiently small so that the exact solution u can be replaced by its local
Taylor expansion of degree (p+ 1) (the validity of the methodology is asymptotic).
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However numerical studies show that the robustness index governs the performance
of estimators in the range of the practical engineering computations which often
employ relatively coarse grids.

7 Numerical studies of robustness of various
error-estimators

We present examples of the application of the methodology described earlier to
study the robustness of several error estimators, namely:

1. Implicit '-lement residual (Est. 1) (Eqs. (17)-(21)) [8], [11], [13], [14].

2. Implicit element residual with equilibration (Est. 2) (Eqs. (17)-(36)) [8], [17],
[25], [29], [59], [60], [61].

3. Implicit element residual based on complementary energy principle (Est. 3)
(defined below) [25], [26], [27], [28], [32], [60], [61].

4. Estimators based on smoothening or Z-Z estimators (Est. 4) (Eqs. (37)-(44))
[40], [41], [42], [43], [44].

Note that in [53] we also studied the performance of several other estimators (ex-
plicit element-residual, subdomain residual etc.).

We now proceed to the discussion of the numerical studies.

7.1 The robustness index for polynomial solutions

Here we address three questions:

1) How many layers of elements should be taken around the cell w0h, for the
h %

values of C , Cr* R , to be practically independent of the surrounding
mesh in the periodic super-patch 2?

2) How much do CU"5, C7• and Rh computed from a periodic super-patch
which includes w. (a = 3 for meshes of triangles and . = 4 for meshes
of quadrilaterals) differ from the same quantities computed from the entire
original mesh?

3) What is the robustness index for the various estimators?
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We will consider the interior-patterns (cell/patch combinations) shown in Figs. 10
and 9 which occur in the meshes shown in Figs. 1 and 6, respectively.

For the scalar elliptic problem we chose the exact solution to be either a general
(homogeneous) polynomial of degree (p + 1)

QG(Zi' X2 )= ~aq z' + i+j p+l, i,j>0 (73)
ij

2
or a harmonic polynomial by imposing the constraint ; D(I(KDeQH) = 0; for

kE=1

example for Kk = id we have

QH(zI,z 2)=a,(zX2 z)+a 2 z 2 , for p+1=2 (74a)

and

QH(zlz 2 ) = a,(z- - 3zz2) + a2 (3Z2z -_Z), for p + 1 = 3 (74b)

In the case of the vector-valued model problem (linear elasticity) we employed
homogeneous "harmonic" polynomial solutions of degree (p + 1)

2
QH (AP.j)2 : D,(u,j(QH)) = 0, i= 1,2 (75)

3=1

We determined the robustness index of the error estimators for the cells w0h

using the approach of the paper. In Table 1 we give the values of CIZ0, C506, 1Rh
for Est. 1 for the scalar elliptic problem with p = 1, for the pattern 1 (shown in
Fig. 9a), when a = 1, 2, 3, 4, 5 layers of elements around wo" are taken in the
patch w~h (see Fig. 8). In Tables 2 and 3 we give the values of C•w6, Couo, and R'%
(a = 3 for the meshes of triangles and a = 4 for the meshes of quadrilaterals)
for the Est. 1, Est. 2, and Est. 4 for the scalar elliptic problem with p = 1 and
2 respectively. These are compared with the values of the effectivity indices OP,
C•6 and R (IZ is obtained by substituting 07, C•i into (5a)) obtained from the
finite-element solution of a Dirichlet boundary-value problem in the grids shown in
Figs. 1, 6 (the big mesh) with data consistent with the homogeneous polynomial
solutions which give the extremal values CL, C6* of the effectivity index n., in
the periodic super-patch calculations. The periodic super-patches employed for
the various patterns were constructed using a mesh-generator, as shown in Fig. 7.
In Table 4 a similar comparison is made for isotropic elasticity (Poisson's ratio
V = 0.3) using meshes of triangles.
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From the reported data we can make the following conclusions related to the
questions formulated above:

1) For linear elements the values of C•l-, C40, R.D in the cell wef do not practi-

cally change when the patch w' has . > 3 layers of elements around the cell
w0h. For higher order elements, a smallers can be taken, i.e. a = 1-2 (thus for

our numerical experiments, we considered patches with a = 3 for the meshes
of triangles and a = 4 for the meshes of quadrilaterals).

2) For a given exact solution which is a homogeneous polynomial (harmonic or

general) of degree (p + 1) the values of CL' , C;O, obtained from a periodic

super-patch are very close to the values,.,'•, C0 obtained from the approx-
imate solution of a boundary-value problem (with data compatible with the
polynomial solutions which correspond to the extrema of the effectivity index
in the periodic super-patch) obtained using the big mesh. Note that we did
not exactly answer question 2 because we did not perform the optimization
in the big mesh; however the numerical experience from [53] indicates that

it gh

Ci, 0;0 are very close to the extremal values of the effectivity index when
the optimization is performed in the big mesh.

3a) The element-residual without equilibration (Est. 1) is not robust for the gen-
eral meshes (like the meshes shown in Fig. 1 and Fig. 6) and should not be
used.

3b) The equilibration of the flux increases the robustness of the element-residual
estimators.

3c) The Z-Z estimator appears to be the most robust.

7.2 The robustness index for general solutions

In 7.1 above, we assumed that the exact solution is a (homogeneous) polynomial
of degree (p + 1). The following question arises:

Are the conclusions based on the assumption that the solution is a polynomial
valid for general solutions?

We now give an example which shows that the results on the robustness of
estimators obtained using polynomials of degree (p + 1) give a good indication of
the local performance of the estimators for any general solution (the theoretical
justification for patchwise uniform meshes is given in theorem 3). Let us consider
the general solution

u(z1 , 2) = (r(zi, z,))* sin( Me,(I, 22)) + (r2(z1, x2)) 2 sin( Q 2 (z1,, 2))
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where

l(ml, 02) = [(XI - 1)2 + (2- 3)2]2' , 01(XI,X2) tan-l( 2  ,)
2-

,2(1,,X2) = [(21..-3)2 + (22 - )], =2(21,-2) = (2

we let fl = (0, 1) x (0, 1) and let Th be the grid shown in Fig. 6. We solved
the Neumann boundary-value problem in (1 using Th (the big mesh) and data
consistent with the exact solution given above and we computed the effectivity
index for Est. 1, Est. 2 and Est. 4 for five of the patterns shown in Fig. 9. We also
computed the effectivity index in the cells Woh by:

a) Solving the Neumann problem in 0 using the grid T h with data corresponding
to the local Taylor-expansion (up to quadratic degree) about the central node
X of the cell Wo =_ WX.

b) By using the local Taylor-expansion (about the central node of the patch)
as exact solution to pose the periodic boundary-value problem (66) over the
periodic super-patches for the patterns shown in Figs. 9a-9e (patterns 1-5).

The effectivity indices for the cells calculated from the approximate solution (which
was obtained using the three different ways stated above) are given in Table 5.

We observe that the effectivity indices obtained using the approximate solu-
tion (computed from the big mesh Th) of the Neumann boundary-value problem
formulated using data obtained either from the general solution or from its local
Taylor series expansion are essentially identical. The results obtained using the
local Taylor series expansion and the periodic boundary-value problem (67) are
also very close to the values obtained from the other two types of problems; still
better agreement could be obtained by increasing the number of layers a in w.'
(here we have used a = 3 layers).

7.3 The influence of various parameters on the robustness
of the estimators

The definitions of Est. 2, Est. 3 and Est. 4 include the choice of some free
parameters, namely:

1) The choice of the correction of the edge residuals for Est. 2 and EAt. 3.
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2) The number and location of the sampling points involved in the definition of
Est. 4.

3) The discrete space of polynomials used in the patch-projections or the so-
lution of the element-residual problem (we may use the bubble-space or the
complete space of polynomials of degree (p + 1) or some intermediate space).

Here we show that the approach can be used for the study of the dependence of
the robustness index on the parameters involved in the definition of the estimators
or to find the most robust version of an estimator for the grids of interest. We also
note that the methodology can be used to design robust versions of estimators by
considering additional parameters (like for example the location of the sampling
points) as variables and by performing the optimization for the finite number of
cell/patch-patterns which occur in the grids of interest.

To show the influence of the various parameters we will consider, in the numer-
ical studies given below, a set of distorted meshes in the periodic super-patches
shown in Figs. 11, 12. (These meshes were selected to include non-standard mesh-
topologies and elements with large maximum angle and aspect ratios.)

A. Z-Z estimators

The robustness of Z-Z estimators depends on the choice of the sampling points.
The following choices are studied for the quadrilaterals with p = 1:

(i) One sampling point at the center of the element (7Type 1) as shown in Fig. 4d.

(ii) Four sampling points along the axes of the master-element (Type 2) as shown
in Fig. 4e. These sampling points correspond to the one-dimensional Gauss-
Legendre integration points of order two along the coordinate-axes of the
master-element.

(iii) Four sampling points (TType 3) at the integration-points of the (2 x 2) Gauss-
Legendre product-rule (shown in Fig. 4f).

We studied the performance of the above estimators for the periodic-grids shown
in Fig. 11; here the cell w0h coincides with the periodic super-patch. In Table 6 we
give the values of C'L, C;4 and Ri. for these cells when the solution is a general
polynomial of degree 2. We observe that the Z-Z estimator of Type 8 which uses
sampling points at the integration points of the 2 x 2 Gauss product-rule shows
the best robustness for these meshes.

For the triangles we studied the following choices of sampling points shown in
Fig. 4a, b, c.

(i) One sampling-point located at the centroid of the triangle (Fig. 4a); this
point will be used only for linear elements.
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(ii) Three sampling-points located at the midsides of the edges of the triangle
(Fig. 4b).

(iii) Seven sampling points which include the points in (i) and (ii) and the mid-
points of the segments which connect the centroid with the vertices of the
triangle (Fig. 4c).

We computed the upper- and lower-bound of the effectivity-index and the ro-
bustness index for the periodic meshes shown in Figs. 12; the periodic meshes have
given aspect-ratio, 1/a (see Fig. 12a) and include some elements with very large
maximum angle. For this example we took aspect-ratio of 1/2 for the periodic
meshes shown in Figs. 12a-12d, and aspect-ratio of 1/8 for the periodic meshes
shown in Figs. 12e, 12f. In Tables 7, 8 we give the results for p = 1 and p = 2,
respectively, obtained by solving Laplace's equation. In Table 9 we give the results
for p = 1 for isotropic linear elasticity. It should be noted that the Z-Z estimator
is exact for the mesh shown in Fig. 12e (for linear elements). We observe that for
the meshes shown in Fig. 12:

(i) For Laplace's equation and p = 1 the choice of sampling points shown in
Fig. 4b (3 sampling points) shows the best robustness.

(ii) For Laplace's equation and p = 2 the choice of sampling points shown in
Fig. 4c is the most robust.

(iii) For isotropic elasticity and p = 1 the choice of sampling points shown in
Fig. 4a gives the most robust Z-Z estimator.

To take into account the nature of the exact solution (when for example it
is harmonic) we may consider another version of the Z-Z estimator which em-
ploys harmonic polynomials in the patch-projections. To check if harmonic patch-
projections will improve the robustness of the Z-Z estimator for grids of general
quadrilaterals we employed the Z-Z estimator with one-sampling point per element
and the periodic cells shown in Fig. 11. The results for the values of C 7, CP,
R,,: for the Z-Z estimator (for the Laplacian) with the general or the harmonic
patch-projection are given in Table 10. From these results we conclude that the
Z-Z estimator is less robust when the harmonic patch-projection is employed.

B. Element residual estimators with various types of equilibration

The robustness of the residual estimators depends on the definition of the
residual-functional. Here we considered two types of equilibration methods, namely,
Ladeveze's and Ohtsubo-Kitamura's techniques. Ladeveze's method splits the in-
terelement fluxes by minimizing the functional given in (31) subject to the con-
straints (29), as discussed earlier. We considered three choices of the weight tv. in
the definition of (31). These are:
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(i) w1 = 1 (see for example [25], [32]) (equilibration of Type A);

(ii) to, = IeiI' (see [60], [61]) (equilibration of Type B);

(iii) w, = J I-', where ei denote the length of side Ej in the transformed plane in
which the operator is the Laplacian (equilibration of Type C).

We computed the robustness of the element-residual estimator with Ladevese's
equilibration of Type A, B, C for the periodic meshes shown in Figs. 11, 12a-12e.
It should be noted that the estimator is exact for linear elements and the mesh
shown in Fig. 12f, while for quadratic elements it is exact for the mesh in Fig. 12e.
The results are given in Tables 11-17. Table 11 gives the results for bilinear quadri-
laterals for Est. 2 with equilibrations of Type A and C and for the periodic meshes
shown in Fig. 11. Tables 12-15 give the results for the meshes of triangular elements
shown in Fig. 12. In particular Tables 12, 13 give the results of the optimization for
Est. 2 (Type A and B) for linear and quadratic elements, respectively (note that
we selected aspect-ratio 1/2 for the meshes shown in Figs. 12a-12d and aspect-
ratio of 1/8 for the meshes shown in Figs. 12e, 12f). Table 14, 15 give the results
of the optimization for the model problem (9) (orthotropic heat-conduction) with
1 :_ Kmz/Kj. 5 10 (the ratio KD,,,/K,.DJ was included as a parameter in the
optimization) and various orientations of the principal axes of orthotropy with
respect to the periodic meshes shown in Fig. 12c, Fig. 12e respectively (here we
selected aspect-ratio 1/1). Table 16 gives the results for the robustness of Est. 2
(Types A and B) for the model problem of isotropic elasticity (with Poisson's ratio
u = 0.3). It should be noted that for the elasticity problem we used aspect-ratio
of 1/2 for the meshes shown in Figs. 12a-12d and aspect-ratio of 1/8 for the mesh
shown in Fig. 12e. We observe that:

(i) For the meshes of quadrilaterals, where we employed Est. 2 (with equilibra-
tion of Type A and C), the robustness depends on the mesh-topology; both
types have reasonable robustness.

(ii) For the meshes of triangles Est. 2 with equilibration of Type B has the best
robustness for the Laplacian.

(iii) From the results for the case of orthotropic heat-conduction we cannot make
a general statement about which type of equilibration is the best. All three
types seem to give reasonably robust element-residual estimator.

(iv) For the case of isotropic elasticity the equilibration of Type B produces the
most robust estimator.

We also implemented element-residual estimators with Ohtsubo-Kitamura flux-
splitting for the isotropic elasticity problem. The element-residual problem is de-
fined as in (21) with the right-hand side defined (with or without equilibration) as
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described in 3.2.2. The discrete space employed in the solution of the local problem
was defined as:

(i) The discrete space which corresponds to the 8-node serendipity element (com-
plete serendipity apace).

(ii) The discrete space spanned by the shape-functions of the mid-side nodes in
the 8-node serendipity element (bubble serendipity space).

In Table 17 we give the values of Crwi, C;O, R.,, for the element-residual estima-
tors with Ohtsubo-Kitamura's flux-splitting (isotropic elasticity with v = 0.3). In
columns 2-4 we give the results when thf -tial Alux-splitting (eq. (33)) is employed
(without equilibration) together with th,. rendipity bubble-space. In columns 5-7
(resp. 8-10) we give the results when the equilibration is employed together with
the complete (resp. bubble) serendipity space. We observe the following:

(i) When the complete serendipity space is employed (together with equilibra-
tion) the estimator lacks robustness.

(ii) When the bubble serendipity space is used together with equilibration a
robust estimator is obtained.

C. Estimators based on the complementary energy principle

Error estimators based on the complementary energy principle (e.g. [25], [26],
[27], [28], [60], [61]) are often preferred by engineers because they provide guaran-
teed upper-bounds of the error. Here we use the methodology of the paper to check
the robustness of a-posteriori error estimators based on the complementary-energy
principle for the orthotropic heat-conduction and elasticity problems and the class
of periodic grids shown in Figs. 11, 12. The error estimators are defined as follows:

a. Orthotropic heat-conduction:

7:I1 110k (76)

where

b. Elasticity

g.:= a(Uh)IIv(,r),.-l (78)

where 6 E JMi such that
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v.&=f inr

1(79)
frI,=-J1,+O.•I., V ee•E(f-)

Here JM 1 denotes the stress-space for the Johnson-Mercier composite equilibrium
triangular dement (see (63]). (We employed the explicit solution of (79) given in
[601.)

For the problem of orthotropic heat-conduction we computed the robustness
of Est. 3 using Ladeveze's flux-splitting with Type A and Type B equilibrations;
the results are given in Table 18. For the elasticity problem we repeated the
computations for the above types of equilibration and for the periodic meshes
shown in Fig. 12a, b, c; the results are given in Table 19. It should be noted that
we employed aspect-ratio of 1/2 for the meshes in Fig. 12a-12d and aspect-ratio of
1/8 for the mesh shown in Fig. 12e. We observe that:

a) For both cases (scalar and vector-valued problem) the estimator with equili-
bration of Type B shows superior robustness than the estimator with equili-
bration of Type A.

b) The error estimators based on the complementary energy principle are less
robust (by far) than the corresponding element-residual estimators.

8 Summary of conclusions

1. The validation of the performance of the estimators based on the robustness
index allows objective comparisons between the various error estimators.

2. A numerical methodology for computing the robustness index is given.

3. The methodology takes directly into account the factors which affect the
performance of estimators namely the geometry of the grid, the differential
operator and the nature of the solution. The methodology has theoretical
basis and can be used to study the robustness of error estimators for the
complex grids which are used in engineering computations.

4. The methodology allows us to check the quality of any new estimator even if
it is only available as a black-box computer subroutine.

5. It is possible to use the methodology to maximize the robustness of a given
estimator for a class of meshes of interest.
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6. The methodology addresses the robustness index for the estimators for el-
ements in the interior of the domain and smooth solutions. The case of
unsmooth solutions and elements at the boundary will be addressed in a
forthcoming paper.

7. The Z-Z estimator seems to be the most robust. For the bilinear quadrilat-
eral elements the sampling points defined in Fig. 4f are recommended. For
the linear (resp. quadratic) triangular elements the choice shown in Fig. 4b
(resp. 4a) is the best for Laplace's equation, while for linear triangles and
elasticity the choice 4a is the most robust. Thus, for linear elements the
choice 4a or 4b could be recommended.

8. The element residual estimators should be used only with equilibration.
Ladeveze's equilibration of Type B is recommended.

9. The Ohtsubo-Kitamura flux-splitting technique gives a robust estimator only
when a bubble space is employed in the element-residual problem.

10. The estimators based on the complementary energy-principle have poor ro-
bustness and are not recommended.

We remark that the conclusions made above are related to the use of general
meshes. Use of families of particular meshes could influence the conclusions.
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Laplace's Equation, Linear Triangles

Element residual without equilibration (Est. 1)

Periodic Problem
No. of layers, a * X

1 1.084 1.312 0.396
2 1.079 1.297 0.376
3 1.080 1.327 0.407
4 1.080 1.317 0.397
5 1.080 1.312 0.392

Table 1. Influence of the size of the patch 4 on the value of the robustness-
index R,& obtained from the periodic super-patch. Laplace's equation, quadratic
harmonic polynomial solution, linear elements (p = 1). Pattern 1 (shown in Fig. 9a)
with a = 1, 2, 3, 4,5 layers around the cell w0 (as shown in Fig. 8) is employed in
the computation of the robustness for Est. 1.

41



Laplace's Equation, Linear Triangles

Pattern Periodic Problem Dirichlet BVP
Element residual without equilibration (Est. 1)

cr 0:04 13 'I _

1 1.080 1.312 0.392 1.080 1.308 0.388
2 1.041 1.418 0.459 1.028 1.413 0.441
3 0.998 1.011 0.013 0.999 1.014 0.015
4 0.996 1.128 0.132 0.983 1.116 0.133
5 0.960 1.701 0.741 0.954 1.701 0.747

Element residual with equilibration (Est. 2)
(Ladevese's equilibration, eq. (32))

1 0.993 0.999 0.008 0.986 0.999 0.015
2 0.999 1.003 0.004 0.977 0.999 0.025
3 0.989 1.026 0.037 0.991 1.030 0.039
4 0.980 1.016 0.036 0.963 1.010 0.048
5 0.923 1.069 0.148 0.916 1.070 0.157
6 0.913 0.993 0.102 0.917 0.999 0.092
7 0.999 1.001 0.002 0.999 1.001 0.002

ZZ estimator (Est. 4)

1 1.004 1.012 0.016 1.004 1.005 0.009
2 0.995 1.035 0.040 0.992 1.021 0.029
3 0.989 0.994 0.015 0.993 0.995 0.012
4 0.958 1.005 0.049 0.941 0.999 0.064
5 0.982 1.013 0.031 0.978 1.010 0.032
6 0.926 0.998 0.082 0.930 1.004 0.079
7 0.979 1.005 0.026 0.979 1.005 0.026

Table 2a. Accuracy of the methodology for general meshes: Laplace's equation,
quadratic harmonic polynomial solution, linear elements (p = 1). The mesh of
triangles shown in Fig. 6 and the patterns 1-7 shown in Figs. 9a-9g are employed
in the computation of the robustness.
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Laplace's Equation, Bilinear Quadrilaterals

Element residual without equilibration (Est. 1)
Periodic Problem Dirichlet BVP

1 1.096 1.323 0.420 1.113 1.298 0.412
2 1.051 1.577 0.628 1.053 1.561 0.616
3 1.114 1.882 0.996 1.131 1.896 1.027
4 1.218 2.240 1.458 1.189 2.261 1.450
5 1.340 2.210 1.550 1.298 2.224 1.524

Element residual with equilibration (Est. 2)
(Bank & Weiser equilibration, eq. (30))

1 0.819 0.978 0.243 0.813 0.979 0.251
2 0.833 0.999 0.201 0.852 1.011 0.185
3 0.776 0.979 0.310 0.784 0.988 0.288
4 0.731 0.953 0.417 0.749 0.976 0.360
5 0.702 0.947 0.480 0.715 0.965 0.435

ZZ estimator (Est. 4)

1 1.010 1.022 0.032 1.011 1.029 0.040
2 1.008 1.017 0.025 1.008 1.018 0.026
3 0.991 1.033 0.042 0.998 1.033 0.035
4 0.978 1.016 0.038 0.980 1.014 0.034
5 0.938 0.999 0.067 0.940 1.001 0.065

Table 2b. Accuracy of the methodology for general meshes: Laplace's equation,
quadratic harmonic polynomial solution, linear elements (p = 1). The mesh of
quadrilaterals shown in Fig. 1 and the patterns 1-5 shown in Figs. 10a-10e are
employed in the computation of the robustness.
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Laplace's Equation, Quadratic Triangles

Element residual with equilibration (Est. 2)
(Ladevese's equilibration, eq. (32))

Periodic Problem Dirichlet BVP

1 0.960 1.032 0.073 0.960 1.032 0.073
2 0.982 1.009 0.027 0.978 1.008 0.030
3 1.011 1.021 0.032 1.010 1.021 0.032
4 0.973 1.011 0.039 0.973 1.011 0.039
5 0.718 0.894 0.511 0.718 0.894 0.511
6 0.806 1.035 0.275 0.811 1.035 0.267
7 0.998 1.007 0.009 0.997 1.006 0.009

ZZ estimator (Fat. 4)
Periodic Problem Dirichlet BVP

Pattern CL CU~ -, Uk W

1 0.969 0.995 0.037 0.969 0.995 0.037
2 0.919 0.935 0.158 0.915 0.933 0.165
3 1.001 1.060 0.061 1.001 1.060 0.061
4 1.006 1.044 0.050 1.005 1.043 0.048
5 0.875 0.933 0.215 0.875 0.933 0.215
6 0.854 0.923 0.254 0.854 0.923 0.254
7 0.978 0.979 0.044 0.977 0.979 0.045

Table 3. Accuracy of the methodology for general meshes: Laplace's equation,
cubic harmonic polynomial solution, quadratic elements (p = 2). (a) The mesh of
triangles shown in Fig. 6 and the patterns 1-7 shown in Figs. 9a-9g are employed
in the computation of the robustness.
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Isotropic Elasticity, Linear Triangles

Element residual with equilibration (Est. 2)
(Ladevese's equilibration, eq. (32))

Periodic Problem Dirichlet BVP
Pattern t CZ47~ ~ t ~4

1 0.965 1.033 0.068 0.949 1.000 0.054
3 0.959 1.049 0.090 0.951 1.048 0.097
4 0.875 1.037 0.179 0.899 1.005 0.117
5 0.853 1.195 0.342 0.856 1.190 0.334

ZZ estimator (Eat. 4)
Periodic Problem Dirichlet BVP

Pattern CutW i Ct

1 0.992 1.054 0.062 0.992 1.027 0.035
3 0.943 1.004 0.064 0.955 1.004 0.051
4 0.944 1.002 0.061 0.931 0.997 0.077
5 0.948 1.043 0.096 0.946 1.002 0.059

Table 4. Accuracy of the methodology for general meshes: Isotropic elasticity,
quadratic "harmonic" polynomial solution, linear elements (p = 1). The mesh of
triangles shown in Fig. 6 and the patterns 1, 3, 4, 5 shown in Fig. 9a, c, d, e are
employed in the computation of the robustness.
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Laplace's Equation, Linear Triangles

Neumann BVP Periodic Problem

Pattern General solution Taylor series Taylor series

(Est. 1) (Est. 2) (Est. 3) (Est. 1) (Est. 2) (Est. 3) (Est. 1) (Est. 2) (Est. 3)

1 1.219 0.993 1.006 1.220 0.993 1.006 1.228 0.999 1.013
2 1.293 0.995 1.006 1.293 0.995 1.006 1.298 0.998 1.009
3 1.007 1.015 0.992 1.007 1.015 0.992 1.006 1.014 0.991
4 1.085 1.003 0.990 1.086 1.003 0.991 1.098 1.015 1.003
5 1.316 1.031 0.983 1.317 1.031 0.983 1.316 1.034 0.987

Table 5. Applicability of the methodology for general solutions: Laplace's equa-
tion, harmonic solution, linear elements (p = 1). Comparison of the values of
the effectivity index for the cells computed using three different approximate so-
lutions: The solution of a Neumann boundary-value problem in the domain and
mesh shown in Fig. 6 with the data taken from the exact solution (Columns 2, 3,
4); the solution of a Neumann boundary-value problem in the domain and mesh
shown in Fig. 6 with the data taken from the quadratic Taylor-series expansion
about the central-node of the mesh-cell wok for which the effectivity index is com-
puted (Columns 5, 6, 7); the solution of a periodic boundary-value problem in
super-patches which include the patches shown in Figs. 9a-9e with the data taken
from the quadratic Taylor-series expansion about the central node of each of the
mesh-cells (Columns 8, 9, 10).
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Poisson's Equation, Bilinear Quadrilaterals

Z-Z Estimators

Periodic Mesh 1

Type K=.CL CUx
K,.in

1 1 0.940 1.035 0.098
2 1 0.959 1.008 0.051
3 1 0.992 1.026 0.034

1 100 0.810 1.044 0.277
2 100 0.843 1.004 0.190
3 100 0.893 1.015 0.135

Table 6a. Influence of various parameters on the robustness of estimators: Z-
Z estimators, Poisson's equation, general quadratic polynomial solution, bilinear
quadrilaterals (p = 1). Comparison of the robustness of the various versions of the
Z-Z-estimator. The robustness results are given for the periodic mesh shown in
Fig. 11a.
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Poisson's Equation, Bilinear Quadrilaterals

Z-Z Estimators

Periodic Mesh 2

SCL CU

1 1 0.945 1.015 0.073
2 1 0.962 1.008 0.047
3 1 0.995 1.009 0.014

1 100 0.860 1.343 0.483
2 100 0.891 1.329 0.438
3 100 0.946 1.185 0.239

Table 6b. Influence of various parameters on the robustness of estimators: Z-
Z estimators, Poisson's equation, general quadratic polynomial solution, bilinear
quadrilaterals (p = 1). Comparison of the robustness of the various versions of the
Z-Z-estimator. The robustness results are given for the periodic mesh shown in
Fig. 11b.
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Poisson's Equation, Bilinear Quadrilaterals

Z-Z Estimators

Periodic Mesh 3

Type Kmm L C
K,,,•

1 1 0.995 1.026 0.031
2 1 1.001 1.009 0.010
3 1 0.999 1.004 0.005

1 100 0.956 1.015 0.061
2 100 0.955 1.011 0.058
3 100 0.989 1.023 0.034

Table 6c. Influence of various parameters on the robustness of estimators: Z-
Z estimators, Poisson's equation, general quadratic polynomial solution, bilinear
quadrilaterals (p = 1). Comparison of the robustness of the various versions of the
Z-Z-estimator. The robustness results are given for the periodic mesh shown in
Fig. 11c.
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Poisson's Equation, Bilinear Quadrilaterals

Z-Z Estimators
Periodic Mesh 4

Type K. I C
K-."

1 1 0.991 1.006 0.015
2 1 0.993 1.005 0.012
3 1 0.994 1.005 0.011

1 100 0.849 1.021 0.198
2 100 0.848 1.008 0.187
3 100 0.847 1.009 0.190

Table 6d. Influence of various parameters on the robustness of estimators: Z-
Z estimators, Poisson's equation, general quadratic polynomial solution, bilinear
quadrilaterals (p = 1). Comparison of the robustness of the various versions of the
Z-Z-estimator. The robustness results are given for the periodic mesh shown in
Fig. lid.
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Laplace's Equation, Linear Triangles

Periodic ZZ estimator (Type 1) ZZ estimator (Type 2) ZZ estimator (Type 3)

Mesh CL CU CL CU CL CU

1 0.963 1.005 0.043 0.955 1.003 0.050 0.957 1.005 0.050
2 0.998 1.011 0.013 0.992 0.995 0.013 0.984 1.005 0.021
3 0.832 1.075 0.272 0.832 0.977 0.225 0.833 0.966 0.236
4 0.833 1.093 0.286 0.766 1.000 0.305 0.744 0.994 0.350
5 1.000 1.000 0.000 1.000 1.000 0.000 1.002 1.005 0.007

Table 7. Influence of various parameters on the robustness of estimators: Z-
Z-estimators, Laplace's equation, harmonic quadratic polynomial solution, linear
triangles. Comparison of the robustness of the various versions of the Z-Z estima-
tor. The robustness results are given for the periodic meshes shown in Fig. 12.
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Laplace's Equation, Quadratic Triangles

Periodic ZZ estimator (7Tpe 2) ZZ estimator ( Type 9)

Mesh CL Cu

1 0.955 1.002 0.049 0.977 1.003 0.027
2 0.893 1.002 0.122 0.964 0.987 0.051
3 0.782 0.990 0.289 0.873 0.972 0.174
4 0.823 1.003 0.218 0.843 1.006 0.192
6 1.001 1.006 0.007 1.013 1.047 0.060

Table 8. Influence of various parameters on the robustness of estimators: Z-
Z-estimators, Laplace's equ, ion, harmonic cubic polynomial solution, quadratic
triangles (p = 2). Comparison of the robustness of the various versions of the
Z-Z estimator. The robustness results are given for the periodic meshes shown in
Fig. 12.
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Isotropic Elasticity, Linear Triangles

Periodic ZZ estimator (Type 1) ZZ estimator (Type 2) ZZ estimator (Type 3)

Mesh CL Cu CL Cu CL Cu

1 0.948 1.011 0.066 0.944 1.006 0.065 0.945 1.008 0.066
2 0.980 1.018 0.038 0.969 1.001 0.033 0.959 1.010 0.053
3 0.833 1.111 0.300 0.726 1.044 0.420 0.728 1.039 0.411
4 0.774 1.117 0.397 0.693 1.039 0.481 0.675 1.019 0.500
5 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.006 0.006

Table 9. Inluence of various parameters on the robustness of estimators: Z-Z-
estimators, isotropic elasticity problem, "harmonic" quadratic polynomial solution,
linear triangles (p = 1). Comparison of the robustness of the various versions of
the Z-Z estimator. The robustness results are given for the periodic meshes shown
in Fig. 12.
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Laplace's Equation, Bilinear Quadrilaterals

Z-Z Estimators

Periodic Harmonic projection Original projection

Mesh CL Cu Iz CL Cu

1 0.998 1.442 0.444 0.999 1.025 0.026
2 0.998 1.551 0.553 0.999 1.015 0.016
3 1.000 1.465 0.465 0.995 1.017 0.022
4 0.999 1.301 0.302 0.999 1.012 0.013

Table 10. Influence of various parameters on the robustness of estimators: Z-Z
estimators, Laplace's equation, bilinear quadrilaterals. Comparison of the robust-
ness of two versions of the Z-Z estimator based on the general or the harmonic
patch projection for the periodic meshes shown in Fig. 11.
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Laplace's Equation, Bilinear Quadrilaterals

Element residual with equilibration

Periodic K. Tpe A (w, = 1) Type C (W, = IeI-)
Mesh K.. CL Cu -X CL Cu

1 1 0.9905 1.2390 0.2485 0.9902 1.2444 0.2542
2 1 0.9857 1.2488 0.2631 0.9976 1.2490 0.2514
3 1 0.9794 0.9991 0.0201 0.9918 1.0701 0.0783
4 1 0.9891 1.1267 0.1376 0.9967 1.1974 0.2007

1 100 0.6197 0.9938 0.6074 0.7861 1.9658 1.1797
2 100 0.6210 0.9922 0.6025 0.8715 1.9737 1.1022
3 100 0.4925 0.9930 1.0234 0.8774 0.9706 0.1094
4 100 0.6334 0.9987 0.5775 0.8912 1.2436 0.3524

Table 11. Influence of various parameters on the robustness of estimators:
Element-residual error-estimators with various types of equilibration. Laplace's
equation, quadratic harmonic polynomial solution, bilinear quadrilaterals (p = 1).
Comparison of the robustness of estimators Est. 2/ 7Tpe A, Est. 2/ 7Vpe C for the
periodic meshes shown in Fig. 11.
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Laplace's Equation, Linear Triangles

Element residual with equilibration

Periodic Type A (wi = 1) Type B (w, = Ie1- 1)
Mesh CL CU 2 CL CU I

1 0.958 1.002 0.046 0.957 1.020 0.065
2 0.999 1.226 0.227 0.999 1.012 0.013
3 1.079 1.636 0.715 0.998 1.058 0.060
4 0.972 1.266 0.294 0.949 1.062 0.113
5 1.000 2.958 1.958 1.000 1.003 0.003

Table 12. Influence of various parameters on the robustness of estimators:
Element-residual error-estimators with various types of equilibration. Laplace's
equation, quadratic harmonic polynomial solution, linear triangles (p = 1). Com-
parison of the robustness of estimators Est. 2/ Type A, Est. 2/ Type B for the
periodic meshes shown in Fig. 12.
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Laplace's Equation, Quadratic Triangles

Element residual with equilibration

Periodic Type A (wID = 1) Type B (wio = 14{j1)
Mesh CL CU R CL Cu 2

1 0.944 1.016 0.075 0.958 0.984 0.060
2 0.991 1.020 0.029 0.991 1.007 0.016
3 1.007 1.262 0.269 0.989 1.003 0.014
4 0.999 1.082 0.083 0.919 0.994 0.094
6 1.000 2.369 1.369 1.000 1.001 0.001

Table 13. Influence of various parameters on the robustness of estimators:
Element-residual error-estimators with various types of equilibration. Laplace's
equation, cubic harmonic polynomial solution, quadratic triangles (p = 2). Com-
parison of the robustness of estimators Est. 2/ Type A, Est. 2/ Type B for the
periodic meshes shown in Fig. 12.
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Orthotropic Heat-Conduction, Linear Triangles

Element residual with equilibration

Grid-Material Type A (wu = 1) Type B (wio = lej1 l) Type C (w, = IeI-')
Orientation

0 (deg) C, CU CL Cu 19 CL Cu

-90 1.004 2.280 1.284 0.962 1.474 0.512 0.877 1.237 0.360
-75 1.023 1.727 0.750 1.002 1.495 0.497 0.941 1.301 0.360
-60 1.041 1.638 0.679 0.995 1.992 0.997 0.995 1.989 0.994
-45 0.994 1.693 0.699 0.994 2.245 1.251 0.995 2.124 1.129
-30 0.972 1.435 0.463 0.994 1.451 0.457 0.993 1.331 0.338
-15 0.972 1.948 0.976 0.960 1.061 0.101 0.894 1.079 0.192
00 1.004 2.280 1.284 0.962 1.474 0.512 0.877 1.237 0.360
15 1.023 1.727 0.750 0.995 1.495 0.500 0.941 1.301 0.360
30 1.041 1.638 0.679 0.995 1.992 0.997 0.995 1.989 0.994
45 0.994 1.693 0.699 0.994 2.245 1.251 0.995 2.124 1.129
60 0.972 1.435 0.463 0.994 1.451 0.457 0.993 1.331 0.338
75 0.972 1.948 0.976 0.960 1.061 0.101 0.894 1.079 0.192
90 1.004 2.280 1.284 0.962 1.474 0.512 0.877 1.237 0.360

Table 14. Influence of various parameters on the robustness of estimators:
Element-residual error-estimators with various types of equilibration. Orthotropic
heat-conduction problem (1 < K./Kj. •5 10), quadratic "harmonic" polyno-
mial solution, linear triangles (p = 1). Comparison of the robustness of estimators
Est. 2/Type A, Est. 2/ Type B, Est. 2/ Type C for the periodic mesh shown in
Fig. 12c and various grid-material orientations.
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Orthotropic Heat-Conduction, Linear Triangles

Element residual with equilibration

Grid-Material Type A (w- 1) Type C (u, = Iei-I)
Orientation

0 (deg) CL Cu CL Cu

-90 1.000 1.419 0.419 1.000 1.010 0.010
-75 1.000 1.156 0.156 0.968 1.002 0.035
-60 0.894 1.000 0.119 0.871 1.013 0.161
-45 0.816 1.000 0.225 0.816 1.030 0.255
-30 0.894 1.000 0.119 0.871 1.000 0.148
-15 1.000 1.156 0.156 0.968 1.002 0.035
00 1.000 1.419 0.419 1.000 1.010 0.010
15 1.000 1.156 0.156 0.968 1.002 0.035
30 0.894 1.000 0.119 0.871 1.000 0.148
45 0.816 1.000 0.225 0.816 1.030 0.255
60 0.894 1.000 0.119 0.871 1.013 0.161
75 1.000 1.156 0.156 0.968 1.002 0.035
90 1.000 1.419 0.419 1.000 1.010 0.010

Table 15. Influence of various parameters on the robustness of estimators:
Element-residual error-estimators with various types of equilibration. Orthotropic
heat-conduction problem (1 < K. 1/ Kin _ 10), quadratic "harmonic" polyno-
mial solution, linear triangles (p = 1). Comparison of the robustness of estimators
Est. 2/ 7pe A, Est. 2/ Type C for the periodic mesh shown in Fig. 12f and various
grid-material orientations.

59



Isotropic Elasticity, Linear Triangles

Element residual with equilibration

Periodic Type A (w, = 1) Type B ( -I1-)
Mesh CL Cu R CL Cu 2

1 0.909 1.052 0.150 0.908 1.075 0.171
2 0.991 1.526 0.535 0.999 1.053 0.054
3 1.053 2.526 1.579 1.007 1.365 0.372
4 0.965 1.510 0.545 0.910 1.374 0.464
5 1.000 5.292 4.292 0.996 1.028 0.032

Table 16. Influence of various parameters on the robustness of estimators:
Element-residual error-estimators with various types of equilibration. Isotropic
elasticity, quadratic "harmonic polynomial solution, linear triangles (p = 1).
Comparison of the robustness of estimators Est. 2/Type A, Est. 2/Type B for
the periodic meshes shown in Fig. 12.
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Isotropic Elasticity, Bilinear Quadrilaterals

Element residual with Ohtsubo and Kitamura flux-splitting

no equilibration with equilibration with equilibration
Periodic bubble space complete space bubble space

Mesh CL CU R CL CU R CL Cu

1 1.219 1.490 0.708 1.341 1.950 1.291 0.947 1.129 0.183
2 1.157 1.554 0.712 1.320 1.950 1.271 0.944 1.129 0.185
3 1.094 1.949 1.403 1.383 1.594 0.977 0.936 1.159 0.223
4 1.065 1.555 0.620 1.223 1.872 1.095 0.979 1.140 0.161

Table 17. Influence of various parameters on the robustness of estimators:
Isotropic elasticity, quadratic "harmonic' polynomial solution, bilinear quadrilat-
erals (p = 1). Element-residual error-estimator without equilibration using the
residual functional in (33) (columns 2-4) and with Ohtsubo-Kitamura equilibra-
tion (using the complete serendipity space (columns 5-7) and using the serendipity
bubble space (columns 8-10)). Comparison of the robustness of the estimators for
the periodic meshes shown in Figs. 11a-11f
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Laplace's Equation, Linear Triangles

Estimators based on complementary energy

Periodic Equilibration of Type A Equilibration of Type B

Mesh CL CU CL Cu

1 1.520 1.636 1.156 1.520 1.636 1.156
2 1.254 1.966 1.220 1.254 1.772 1.026
3 1.641 2.673 2.314 1.362 1.742 1.104
4 2.007 4.205 4.212 1.792 3.696 3.488
5 1.225 3.825 3.050 1.225 1.735 0.960

Table 18. Influence of various parameters on the robustness of estimatorr- Estima-
tors based on the complementary energy-principle. Laplace's equation, quadratic
harmonic polynomial solution, linear triangles (p = 1). Comparison of the robust-
ness of estimators Est. 3/ Type A and Est. 3/ Type B for the periodic meshes shown
in Fig. 12.
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Isotropic Elasticity, Linear Triangles

Estimators based on complementary energy

Periodic Equilibration of Type A Equilibration of Type B

Mesh CL Cu CL Cu

1 1.184 4.113 3.297 1.171 4.046 3.217
2 1.399 8.180 7.579 1.359 5.902 5.261
3 14.399 89.634 102.033 1.541 65.359 64.900

Table 19. Influence of various parameters on the robustness of estimators: Esti-
mators based on the complementary energy-principle. Isotropic elasticity problem,
quadratic "harmonic' polynomial solution, linear triangles (p = 1). Comparison
of the robustness of estimators Est. 3/ Type A and Est. 3/ Tpe B for the periodic
meshes shown in Fig. 12a, b, c.
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List of Figures

Figure 1. The mesh-cell wo (dark gray) and the surrounding layers of elements
(light gray) which influence the error (and the error-estimator) in w4h.

Figure 2. Edge e with its normal n and the elements T-.,, r, connected to it.

Figure 3. (a) The vertex X with the elements rk1 and the edges ch attached to it;
(b) The local enumeration for the degrees of freedom of the correction 0 for edges
connected to node X.

Figure 4. Various selections of sampling points in the master-triangle and rect-
angle.

Figure 5. (a) A domain 01 with the subdomains S(x°,HI), (1o, Zo which are
exactly covered by a periodic array of super-patches; (b) An example of finite-
element grid made by the periodic repetition of a periodic super-patch; (c) The
periodic super-patch.

Figure 6. Typical example of a general finite-element grid of triangles generated
by a commercial mesh-generator.

Figure 7. Extraction of a patch and completion to a periodic super-patch for
meshes of triangles and quadrilaterals (a) The actual grid of triangles with the
subdomains woa, 4sh; (b) The subdomain 4 with 4oh in its interior; (c) The subdo-
main ,4 embedded into a periodic super-patch; (d) The actual grid of quadrilaterals
with the subdomains woh, w4; (e) The subdomain w with 4oh in its interior; (f) The
subdomain w4a embedded into a periodic super-patch.

Figure 8. Influence of the size of the patch wcu on the calculation of the robustness-
index R,.6: The cell 0 (shown without shading) surrounded by several mesh-layers
(indicatea by various tones of gray-shading).

Figure 9. General mesh of triangles generated by a commercial mesh-generator
(shown in Fig. 6): (a)-(g) Cell/patch combinations (patterns) 1-7. The cell woa is
shaded gray; the perigram of the patch w4 is shown in thick black line.

Figure 10. General unstructured mesh of quadrilaterals (shown in Fig. 1): Cell/
patch combinations (patterns) used in the study of the robustness index for the
various estimators. The cell w4" consists of.: (a) 3 elements, (b) 4 elements, (c) 6
elements, (d) 7 elements, (e) 8 elements connected to a node. The cell 40 is shaded
gray; the perigram of the patch w4h is shown in thick black line.

Figure 11. Influence of various parameters on the robustness of the estimators:
Periodic meshes of bilinear quadrilateral elements. (a) Mesh 1; (b) Mesh 2; (c)
Mesh 3; (d) Mesh 4.

Figure 12. Influence of various parameters on the robustness of the estimators:
Periodic meshes of triangles. (a) Mesh 1; (b) Mesh 2; (c) Mesh 3; (d) Mesh 4; (e)
Mesh 5; (f) Mesh 6.
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